Received 26 October 2004

Online 20 November 2004

Accepted 10 November 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Jian Wang,* Qing-Ling Ni, Xian-Shu Bi and Hong-Xia Jian

School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China

Correspondence e-mail: wang1_xj@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.018 wR factor = 0.041 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(pyridinium-2-thiolato)cadmium(II)

In the title compound, $[CdCl_2(C_5H_5NS)_2]$, the Cd^{II} atom (site symmetry 2) is coordinated by the S atoms of two zwitterionic pyridine-2-thione ligands and two Cl atoms in distorted tetrahedral geometry [Cd-S = 2.5068 (8) Å and Cd-Cl =2.4684 (8) Å]. The molecules are linked *via* N-H···Cl, C-H···Cl and C-H···S interactions into an extended network.

Comment

Thiolate complexes are of considerable interest in terms of their structures and differing physical properties due to the versatile binding modes of the sulfur atoms (Dance *et al.*, 1987). Pyridine-2-thione (HPyS) is a versatile sulfur ligand, since it can behave either as a neutral (bonding through the S atom), monoanionic S-monodentate, N,S-bidentate, S-bridging or N,S-bridging species (Su *et al.*, 2002). In a further exploration of the coordination behaviour of HPyS, we report the synthesis and structure of the title compound, (I), in which the HPyS acts as a neutral S-bonded ligand.

The asymmetric unit of (I) consists of an HPyS molecule, a Cl ion and a Cd^{II} cation, the latter occupying a special position with twofold symmetry (Table 1 and Fig. 1). The complete

Figure 1

View of (I), with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. The symmetry code is as given in Table 1.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

The crystal packing in (I), showing hydrogen bonds as dashed lines.

molecule is generated by twofold symmetry; the Cd atom is coordinated by two S atoms from two HPyS ligands and two chloride ions in a distorted tetrahedral geometry. The largest angle, $S-Cd-S^i$ (see Table 1 for symmetry code) is 121.33 (4)°, while the smallest, $Cl-Cd-S^i$, is 101.08 (3)°. The dihedral angle between the $S-Cd-S^i$ and $Cl-Cd-Cl^i$ planes, which is usually considered as an indication of the degree of distortion of a complex with tetrahedral coordination geometry, is 84.4 (3)°. These data indicate a relatively large deviation from ideal T_d symmetry.

The Cd–S bond length in (I) is 2.5068 (8) Å, which is similar to the Cd–S (terminal) bond length in the complex $[Cd(3-Me_3Sipyt)_2]$ (3-Me_3Sipyt is 3-trimethylsilylpyridine-2-thionate; Castro *et al.*, 1993), but longer than that in $[Cd(S-2-PhCONHC_6H_4)_2(1-MeIm)_2]$ (1-MeIm is 1-methylimidazole; Sun *et al.*, 1999). The Cd–Cl bond length in (I) is 2.4684 (8) Å, which is within the sum of the covalent radii of cadmium and chlorine (2.48 Å).

There are weak N-H···Cl, C-H···Cl and C-H···S interactions (Venkataramanan *et al.*, 2004; Nishio, 2004) in (I) (Table 2), giving rise to a three-dimensional network (Fig. 2).

Experimental

A solution of $CdCl_2 \cdot 4H_2O$ (0.191 g, 0.75 mmol) in methanol (10 ml) was added to a solution (10 ml) of pyridine-2-thiol (0.166 g, 1.5 mmol) in methanol, with stirring at room temperature for 3 h. The filtrate was allowed to slowly evaporate. Two weeks later, light-yellow crystals of (I) were obtained.

Crystal data

[CdCl₂(C₅H₅NS)₂] Mo $K\alpha$ radiation $M_r = 405.62$ Cell parameters from 2850 reflec-Orthorhombic *Fdd*2 tions a = 12.837(3) Å $\theta=1.9{-}27.0^\circ$ $\mu=2.16~\mathrm{mm}^{-1}$ b = 27.526 (6) Å c = 8.140(2) Å T = 293 (2) K $V = 2876.3 (12) \text{ Å}^3$ Rod, light yellow $0.15 \times 0.07 \times 0.06 \text{ mm}$ Z = 8 $D_x = 1.873 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer	1579 independent reflections 1520 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Bruker, 1998)	$h = -13 \rightarrow 16$
$T_{\rm min} = 0.834, \ T_{\rm max} = 0.879$	$k = -34 \rightarrow 27$
4192 measured reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.041$	$(\Delta/\sigma)_{\rm max} = 0.029$
S = 1.02	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
1579 reflections	$\Delta \rho_{\rm min} = -0.30 \mathrm{e} \mathrm{\AA}^{-3}$
78 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	729 Friedel pairs

Flack parameter = 0.04(2)

Table 1

Selected geometric parameters (Å, °).

Cd-S	2.5068 (8)	Cd-Cl	2.4684 (8)	
S ⁱ -Cd-S	121.33 (4)	$Cl^i - Cd - S^i$	109.60 (3)	
Cr-Cd-Cl	114.83 (4)	CI-Cd-S	101.08 (3)	

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1A \cdots S^{ii}$ $C3 - H3A \cdots Cl^{iii}$	0.93 0.93	2.84 2.87	3.643 (3) 3.619 (3)	145 139
$N-H0A\cdots Cl^{iv}$	0.86	2.39	3.231 (2)	167
	4	2 1 2	1.3	

Symmetry codes: (ii) $\frac{1}{2} + x$, y, $\frac{1}{2} + z$; (iii) $\frac{3}{4} - x$, $\frac{1}{4} + y$, $\frac{3}{4} + z$; (iv) $x - \frac{1}{4}$, $\frac{3}{4} - y$, $\frac{1}{4} + z$.

All H atoms were apparent in a difference map. They were repositioned in idealized positions and refined as riding on their carrier atoms [C-H = 0.93 Å and U_{iso} (H) = 1.2 U_{eq} (C)].

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 for Windows (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

This work was sponsored by the NSF of Guangxi Province (No. 0447031).

References

- Bruker (1998). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dance, I. G., Garbutt, R. G. & Craig, D. C. (1987). Inorg. Chem. 26, 3732–3740.
 Castro, A., José, A., García-Vázquez, R. J. & Sousa, A. (1993). Inorg. Chim. Acta. 211, 47–54.
- Farrugia, L. J. (1997). J. App. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Nishio, M. (2004). CrystEngComm, 6, 130–158.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, W., Hong, M., Weng, J., Liang, Y., Zhao, Y., Cao, R., Zhou, Z. & Chan, A. S. C. (2002). *Inorg. Chim. Acta*, 331, 8–15.
- Sun, W. Y., Zhang, L. & Yu, K. B. (1999). J. Chem. Soc. Dalton Trans. pp. 795– 798.
- Venkataramanan, B., Saifudin, M. A., Jagadese, J. V. & Suresh, V. (2004). CrystEngComm, 6, 284–289.